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Abstract. Previous results for the generation of linear, icosahedral, Jahn–Teller (JT)
Hamiltonians with continuous group symmetries are extended. It is demonstrated that it is
possible to define electronic generalized tensor operators on a direct sum electronic space
such that a set of these operators is closed under commutation with another set of electronic
generalized tensor operators which act as the generators of a continuous group. The normal
modes carrying irreducible representations of the continuous group are then coupled ‘equally’
to produce a JT Hamiltonian which is invariant under the operations of the continuous group.
The continuous groups generated on the direct sum spaces (T1 ⊕ T2), (Ti ⊕ G), (Ti ⊕ H ) and
(G ⊕ H ) are discussed in detail. These additional continuous groups are of interest when the
lowest JT states of certain icosahedral JT systems (such as some of those found in C60) are
modelled. The additional continuous group symmetry allows an analytic diagonalization of the
linear JT matrix to be provided and thus facilitates an exact treatment of the vibronic ground
state for these models.

1. Introduction

In neutral C60, a molecule with icosahedral symmetry, the highest occupied molecular orbital
(HOMO) is found to be a filled orbital ofhu symmetry [4]. The lowest unoccupied molecular
orbital (LUMO) is found to be oft1u type. Exciting an electron from the HOMO into the
LUMO produces an excitation which may then have the symmetry characteristics of any of
the irreducible representations (irreps) found in the decomposition of the direct product of
these two irreps,hu⊗t1u = T1g⊕T2g⊕Gg⊕Hg. The presence of such excitations will cause
the icosahedral molecule to suffer a Jahn–Teller (JT) interaction even though in its ground
state the neutral molecule does not. Negriet al [8] make some numerical predictions as
to the ordering of the lowest exciton states in C60 as do Lazlo and Udvardi [7]. It is clear
from the results of these two studies that the behaviour of closely spaced exciton states of
T1, T2, G andH symmetry will be of interest. The work in this paper was motivated by
the search for ways in which JT systems of, for example, the type(T1g ⊕ T2g) ⊗ (h ⊕ g)
could be treated analytically. Such a type of JT system could be found in the lowest exciton
states of neutral C60.

In studying strong JT coupling problems, one problem in the analysis is to analytically
diagonalize the linear JT matrix associated with the problem. If this is possible then the
JT electronic ground state, the lowest energy eigenvector of the JT matrix, is immediately
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known and the form of the Born–Oppenheimer vibronic ground state may be determined.
In many other JT systems that have previously been considered, for exampleT ⊗ h and
G⊗ (g ⊕ h) [2] in icosahedral symmetry, an exact analytical treatment in strong coupling
has been possible due to the presence of unexpectedly high symmetry (above that of the
point group for the molecular system) in the linear JT Hamiltonian of the problem. This
unexpected continuous group symmetry, which in the above cases is SO(3) and SO(4)
respectively, allowed orthogonal transformations to be determined which diagonalize the
associated JT matrix. In initiating this body of work it was hoped that it would be possible
to find further continuous group symmetries associated with the linear JT Hamiltonians
for problems of the type(0i ⊕ 0j ) ⊗ 6λ that may occur in the neutral C60 exciton
spectrum.

In a paper in 1980 [11], Pooler provided a method for generating linear JT Hamiltonians
with continuous group symmetries that is applicable to all real character simple phase groups.
This was an extension from earlier work [9] which had itself generalized the theory of the
generation of continuous groups of irreducible electronic operators for the rotation group
[6], to include simply reducible groups and the cubic double group.

The method that Pooler demonstrated involved defining a set of odd and even [9]
electronic generalized tensor operators on a single irreducible electronic space. (In his
definition even operators are those which always occur in the symmetric part of the
direct product of an integer representation with itself, while those which occur in the
antisymmetric part are defined as odd). The odd operators were shown to be closed under
commutation amongst themselves, so forming the generators of a continuous group. Under
the action of commutation with these generators, the even operators were transformed
amongst themselves, and hence were seen to carry irreps of the continuous group. It
was shown that if the even electronic operators are coupled to suitably chosen vibrational
coordinates, a linear JT Hamiltonian that is a scalar under the operations of the group
may be formed, provided that the coupling strengths of the modes associated with a
particular irrep, carried by the even operators, are in the same ratio as certain isoscalars
(section 3).

In this paper it is shown that it is possible to define electronic generalized tensor
operators on an electronic space that is a direct sum of more than one irreducible space,
with the odd operators again forming the generators of a continuous group, and another set
of operators carrying irreps of that group. It is precisely this result that was sought in order
to allow an analytic treatment of(0i ⊕ 0j )⊗6λ JT problems.

In section 2 the notation to be employed in this paper is introduced and some of the
relevant group theory is discussed briefly. In section 3 a concise account of Pooler’s results
for the generation of continuous groups using operators defined on a single irreducible
electronic space is provided, and ‘equal’ coupling is defined. In section 4 it is demonstrated
that the Judd–Pooler method may be extended, allowing the generators of a continuous
group to be defined on a space that is the direct sum of irreducible electronic spaces. The
tensorial notation of Derome and Sharp [3], as elucidated by Butler [1], is used, as general
relations for the commutation of ‘direct sum’ tensor operators are obtained. The specific
implications for irreps of the icosahedral group are presented. In section 5 the continuous
groups that may be generated on the icosahedral electronic spaces (T1 ⊕ T2), (Ti ⊕ G),
(Ti ⊕ H ) and (G ⊕ H ) are examined in detail and the form of the invariant linear JT
Hamiltonians are provided. In the appendix, section A.1 contains a derivation of the way
in which it is possible to define generalized tensor operators on a direct sum space and
section A.2 provides a derivation of the way in which a product of two such generalized
tensor operators may be expressed as a linear sum of other such generalized tensor operators.
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Although the results in sections A.1 and A.2 are not new, their application in this paper
is novel and this work is included for completeness. The sections A.3–A.5 contain tables
listing the way in which icosahedral operators are embedded in the operators that transform
as irreps of the continuous groups.

2. Notation and definitions

In this paper the manipulation of symmetrized coupling coefficients will figure in many
of the calculations. It will prove convenient to make use of both the tensorial notation
of Derome and Sharp [3], as well as the generalized [1] Wigner notation. The tensorial
notation provides clarity when raising and lowering indices on complex conjugation and
for that reason it is used in the derivation of the general results of section 4 and in the
appendix. The icosahedral basis used by Pooler in deriving his tables of 3-jm and 6-j
symbols [10] is employed in sections 3 and 5, and here the generalized Wigner notation
is used in accordance with the original papers by Pooler. All the applications in this
paper will deal with the icosahedral group which is an example of a real character simple
phase group. A real character group is one in which the representation complex conjugate
to λ is equivalent toλ: λ = λ∗. A simple phase group is one in which the 3-jm
symbols may be defined such that permutation of their columns results only in a phase
change.

In the generalized Wigner notation, the 3-jm symbol is represented by(
31 32 33

γ1 γ2 γ3

)r
(1)

where theγ ’s label the irrep basis andr is a multiplicity label distinguishing between
repeated irreps in31⊗32 = 633. In the tensorial notation the 3-jm symbol is equivalently
defined as

(313233)rγ1γ2γ3. (2)

A unitary matrix, the 1-jm symbol,(λ)ij , which connects irreps,λ(R), with their
complex conjugates,λ∗(R), may be defined. This symbol also allows a raising operation
to be defined [1]

(λ)i1j1(λ∗1λ2λ3)rj1i2i3 = (λ1λ2λ3)
i1
r i2i3

(3)

where the summation over repeated indices is implicit, as will be the case in all the use
of the tensor notation, unless specifically indicated otherwise. Pooler provides an explicit
form for the 1-jm symbol for the icosahedral group,

(λ)ij = |λ| 12 (λλA)1ij0 = δ(i,−j) (4)

whereA is the identity irrep and|λ| is the dimensionality of the irrepλ. It should be noted
that whenλ = A, i andj are both zero and|λ| = 1 so that(A)00 = 1 as required.

Coupled tensors may be defined by

{Pλ1Qλ2}rλi = |λ|
1
2φλ(λ1λ2λ)

ri1i2
iP

λ1
i1
Q
λ2
i2

(5)

whereφλ is the phase of the 1-jm symbol which may be taken to be+1 for all λ in the
icosahedral group.

Another operation that will be of interest is that of permuting the columns of the 3-jm
symbols. For simple phase groups phases may be chosen so that the 3-jm symbols are
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invariant under even column permutations and are multiplied byθ(λ1λ2λ3r) = ±1 under
odd ones. For the icosahedral group Pooler provides the result

θ(λ1λ2λ3r) = (−1)λ1+λ2+λ3(−1)q(λ1λ2λ3r) (6)

whereq(λ1λ2λ3r) equals−1 if (λ1λ2λ3r) is any permutation of (HHG1) and+1 otherwise,
and(−1)λ is given by

(−1)λ =
{
+1 for λ = A, G or H

−1 for λ = T1 or T2.
(7)

6-j symbols will also appear in many of the manipulations in this paper and may be
defined [1] as{
λ1λ2λ3

µ1µ2µ3

}
r1r2r3r4

= (λ1µ2µ3)
j2

r1i1 j3
(µ1λ2µ3)

j3
r2j1i2

(µ1µ2λ3)
j1

r3 j2i3
(λ1λ2λ3)

i1i2i3
r4

. (8)

3. Electronic operators defined on a single irreducible electronic space

In [11], using electronic operators transforming as the irreps of a real character simple phase
group,G, Pooler provides a method for generating linear JT Hamiltonians which exhibit
continuous group symmetries.

In Pooler’s notation electronic operators,V r3t , transforming as basis functions of the
irrep3 may be defined on an electronic basis|0γ 〉 (which transforms as the irrep0 under
the operations of the real character simple phase group) as follows:

V r3t =
∑
γ γ ′
|3| 12

(
γ 3 0

0 t γ ′

)r
|0γ 〉〈0γ ′|. (9)

Pooler provides the commutation relation for operators of this type,

[V r3
γ , V r

′3′
γ ′ ] =

∑
sr ′′3′′γ ′′

(
3 3′ γ ′′

γ γ ′ 3′′

)s {
3 3′ 3′′

0 0 0

}
rr ′r ′′s

(|3||3′||3′′|) 1
2

×[θ(003r)θ(003′r ′)− φ0θ(003′′r ′′)]V r ′′3′′γ ′′ . (10)

Using this relation and the expressions forθ andφ0 it is clear that odd operators commute
amongst themselves and that the commutator of an odd operator and an even operator is a
linear combination of even ones. Hence, the odd operators act as the generators of some
continuous group,G̃, with the even operators carrying irreps of that group. Pooler uses
the notationMr3

t for odd operators andJ r3t for even ones. Putting the generators ofG̃

into standard form the transformation properties of the operatorsV r3t may be obtained from
their commutation relations with the generators. Hence, even operators carrying irreps of
G̃ may be obtained and may be expressed asJ r̃3̃

γ̃
.

Using these sets of operators which transform as irreps ofG and G̃, Pooler considers
two linear JT Hamiltonians, one invariant underG and one that is invariant underG̃, written
respectively using (5) as

HG
JT =

∑
r3

kr3{J r3Qr3}A0 |3|
1
2

HG̃
JT =

∑
r̃3̃

k̃r̃3̃{J r̃3̃Qr̃3̃}Ã0 |3̃|
1
2

(11)

where theQr3 andQr̃3̃ are sets of vibrational coordinates transforming in the same way
as their respective electronic operators.A and Ã are the identity irreps of their respective



Linear Jahn–Teller systems in icosahedral symmetry 7651

groups andk and k̃ are JT coupling constants. Here the groupG is the symmetry group
of the molecule with which the linear JT HamiltonianHG

JT is associated. Simultaneous
transformation of the electronic operators and the vibrational coordinates under the group
operationsG in HG and G̃ in HG̃, leaves each Hamiltonian invariant. Clearly the
HamiltonianHG

JT must be invariant under the symmetry group of the molecule. That it

is possible to define another JT HamiltonianHG̃
JT using a set of electronic and vibrational

operatorsJ r̃3̃, Qr̃3̃, which are linear combinations of the operatorsJ r3, Qr3 of the group
G and which transform as irreps of the group̃G is at first sight merely an interesting
peculiarity. However, using Racah’s factorization lemma Pooler provides the result

HG̃
JT =

∑
rr̃33̃

k̃r̃3̃|3̃|
1
2 〈r̃3̃r3; r̃3̃r3||ÃA〉{J r3Qr3}A0 (12)

where the factor〈 || 〉 is an isoscalar. This demonstrates that the Hamiltonian which is
invariant under the groupG is also invariant under the group̃G if the coupling constants
are related by factors depending upon certain isoscalars. ‘Equal’ coupling refers to the
values ofkr3 and k̃r̃3̃ that ensure the equality of these two Hamiltonians.

4. Electronic operators defined on an electronic space which is a direct sum of more
than one irreducible space

In this section the properties of generalized tensor operators defined on a basis that is a
direct sum of irreducible bases are discussed. Following Butler [1], a brief account of
the general transformation properties of tensor operators, so defined, is presented. The
commutation relations of direct sum tensor operators are then provided and the implications
for the icosahedral group discussed.

4.1. General relations for the tensor operators of a real character simple phase group

Under the action of a groupG the basis ket|xλi〉 transforms as

OR|xλi〉 =
∑
i

|xλj〉λ(R)ji (13)

wherex enumerates distinct irreducible spaces with the same transformation properties given
by the representation labelλ, andi labels the basis within an irreducible space. A basis for
linear operators may then be chosen to be

|x1λ1i1〉〈x2λ2i2|. (14)

Linear combinations of these operators may be formed such that linear operators
transforming as irreps of the group are obtained. Such a combination may be expressed as

(rλi(x1λ1, x2λ2)) = |λ| 12 (λ1λλ2)
i1
r ii2
|x1λ1i1〉〈x2λ2i2| (15)

and under the action of the group it may be shown (section A1) that this operator transforms
as

OR(rλi(x1λ1, x2λ2))OR−1 = (rλj (x1λ1, x2λ2))λ(R)ji . (16)

This is (15.4) of [1]. This result demonstrates that a linear tensor operator may be defined
on a basis transforming asλ1⊗ λ∗2, whereλ1 6= λ2 in general.
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Commutation relations for these tensor operators will now be derived. Consider the
product of two such tensor operators,

(rλi(x1λ1, x2λ2))(r
′λ′i ′(x ′1λ

′
1, x
′
2λ
′
2))

= (|λ||λ′|) 1
2 (λ1λλ2)

i1
r ii2

(λ2λ
′λ′2)

i2
r ′ i ′i ′2
|x1λ1i1〉〈x ′2λ′2i ′2|δx2x

′
1
δλ2λ

′
1
.

(17)

In A.2 it is demonstrated that for a real character simple phase group this product may be
re-expressed as a sum over tensor operators defined on the product spaceλ1 ⊗ λ′2, so that
the right-hand side of (17) becomes

=
∑
λ3

(|λ||λ′||λ3|) 1
2 (λλ′λ3)

j

r4ii ′

{
λ λ′ λ3

λ′2 λ1 λ2

}
rr ′r3r4

×θ(λ1λλ2r)θ(λ2λ
′λ′2r

′)(r3λ3j (x1λ1, x
′
2λ
′
2))δx2x

′
1
δλ2λ

′
1
.

(18)

4.2. Commutation relations for tensor operators of the icosahedral group

From the discussion of Pooler’s method in section 3 it is apparent that the behaviour under
commutation of the electronic tensor operators associated with a JT problem will be of
interest. When considering tensor operators defined on a single irreducible electronic space,
odd operators were seen to be closed under commutation whilst the commutator of an odd
and even operator produced a linear combination of the even operators. Consider table 1.
Odd irreps within a Kronecker product are encased in{ }A brackets. For even operators
that are defined on the same irreducible space as a set of odd operators, the results of
Pooler remain, with the odd operators generating a continuous group, irreps of which the
even operators carry. Now, however, consider the following commutator between an odd
operator and an operator defined on a direct sum space,

[(rλi(x1λ1, x1λ1)), (r
′λ′i ′(x1λ1, x2λ2))]

=
∑
λ3

(|λ||λ′||λ3|) 1
2 (λλ′λ3)

j

r4ii ′

{(
λ λ′ λ3

λ2 λ1 λ1

)}
rr ′r3r4

(19)

×θ(λ1λλ1r)θ(λ1λ
′λ2r

′)(r3λ3j (x1λ1, x2λ2))

where(x1λ1) 6= (x2λ2). From this it is clear that the commutator of an odd operator defined
on λ1⊗ λ1 and an operator defined onλ1⊗ λ2 is a linear combination of operators defined
on λ1 ⊗ λ2. Hence, the operators defined onλ1 ⊗ λ2 are closed under commutation with

Table 1. Kronecker products for the icosahedral group. Symmetrized and antisymmetrized
products are indicated as [ ]S and{ }A, respectively.

Product with

Irrep |0| A T1 T2 G H

A 1 [A]S T1 T2 G H

T1 3 [A+H ]S+ {T1}A G+H T2 +G+H T1 + T2 +G+H
T2 3 [A+H ]S+ {T2}A T1 +G+H T1 + T2 +G+H
G 4 [A+G+H ]S T1 + T2 +G+ 2H

+{T1 + T2}A
H 5 [A+G+ 2H ]S

+{T1 + T2 +G}A
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the odd operators, and will again carry irreps of the continuous group (G1 say) generated
by the odd operators.

Under the action of the odd operators defined onλ2 ⊗ λ2 the following commutator
occurs,

[(rλi(x2λ2, x2λ2)), (r
′λ′i ′(x1λ1, x2λ2))]

= −
∑
λ3

(|λ||λ′||λ3|) 1
2 (λ′λλ3)

j

r4i ′i

{
λ′ λ λ3

λ2 λ1 λ2

}
r ′rr3r4

(20)

×θ(λ1λ
′λ2r

′)θ(λ2λλ2r)(r3λ3j (x1λ1, x2λ2)).

The operators defined onλ1⊗λ2 are also closed under commutation with the odd operators
defined onλ2⊗ λ2. Hence, these odd operators generate a continuous group (G2 say), with
the λ1 ⊗ λ2 operators carrying irreps of this group. It is clear that the generators ofG1

commute with the generators ofG2 so that theλ1⊗λ2 operators above also carry irreps for
the continuous groupG1⊗G2. Using these results it is possible to generate many higher-
order rotation groups associated with the electronic spaces (T1 ⊕ T2), (Ti ⊕ G), (Ti ⊕ H )
and (G ⊕ H ). If the λ1 ⊗ λ2 electronic operators are associated with vibrational modes
that transform in the same manner, a linear JT Hamiltonian may be formed that is invariant
under the continuous group operations.

The results of Pooler [11] describing the groups generated by odd operators defined on
single irrep spaces may now be used to determine the continuous groups that are carried by
the λ1⊗ λ2 operators defined on the direct sum spaces. The rotational groups that may be
generated are as follows.

For the (T1⊕ T2) direct sum space,

(T1⊕ T2)⊗ (T1⊕ T2) = (T1⊗ T1)⊕ (T2⊗ T2)⊕ (T1⊗ T2)⊕ (T2⊗ T1)

= ([A⊕H ]S⊕ {T1}A)⊕ ([A⊕H ]S⊕ {T2}A)⊕ 2(G⊕H). (21)

The odd operators, transforming asT1 andT2, each generate the group SO(3). This means
that it is possible to form Hamiltonians with SO(3) or SO(4) symmetry.

Similarly for the (Ti ⊕ G) direct sum space, the two sets of generators areTi (which
generates SO(3)) andT1 ⊕ T2 which may generate SO(3) or SO(4). Hence there are three
types of Hamiltonian which may be constructed, SO(3), SO(4) and SO(3)⊗ SO(4).

For the (Ti⊕H ) space the two sets of generators areTi andT1⊕T2⊕G which generates
either SO(3) or SO(5). Hence, there are four possible types of Hamiltonian, SO(3), SO(4),
SO(5) and SO(3)⊗ SO(5).

For the (G⊕H ) space the two sets of generators areT1⊕T2 andT1⊕T2⊕G. Hence, there
are six possible types of Hamiltonian, SO(3), SO(4), SO(5), SO(3)⊗SO(4), SO(3)⊗SO(5)
and SO(4)⊗ SO(5).

These results are summarized in table 2. The way in which the icosahedral irreps embed
in irreps of the continuous groups is also indicated. The notation for the irrep labels of
G1⊗G2 will be explained in section 5 for each case.

It is also clearly possible to consider larger direct sums of irreducible electronic spaces.
However, as anyλ1⊗ λ2 irrep operator is made up of ket–bras from at most two different
irreducible spaces, there will only be non-zero commutation relations for any givenλ1⊗λ2

operator with at most two sets of group generators. Studying the group behaviour of all
the ‘two irrep’ direct sum spaces will provide all the information needed to characterize the
larger direct sum spaces.

In the following section the continuous groups that may be generated on the electronic
spacesT1⊕ T2, Ti ⊕G, Ti ⊕H andG⊕H will be discussed. The notation(r3λ(01, 02))
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Table 2. The continuous groups generated on the direct sum electronic spaces in icosahedral
linear Jahn–Teller systems. (The notationTi andTj indicates that within a row of the table if
i = 1 thenj = 2 andvice versa.)

System Group EmbeddingG1 ⊗G2 ⊃ I
(T1 ⊕ T2)⊗ (g ⊕ h) SO(3)⊗ SO(3) (11) ≡ g ⊕ h
(Ti ⊕G)⊗ (tj ⊕ g ⊕ h) SO(3)⊗ SO(4) (1( 1

2
1
2)) ≡ tj ⊕ g ⊕ h

(Ti ⊕H)⊗ (t1 ⊕ t2 ⊕ g ⊕ h) SO(3)⊗ SO(5) (1[10]) ≡ t1 ⊕ t2 ⊕ g ⊕ h
(G⊕H)⊗ (t1 ⊕ t2 ⊕ g ⊕ 2h) SO(4)⊗ SO(5) (( 1

2
1
2)[10]) ≡ t1 ⊕ t2 ⊕ g ⊕ 1h⊕ 2h

will be used to indicate an irreducible tensor operator transforming as the basis function
λ of the irrep3 and built on the electronic ket–bra set|01γ 〉〈02γ

′
2|. Where there is no

ambiguity the more compact notationJ r3λ will also be used.

5. The linear JT Hamiltonians of the electronic spacesT1⊕ T2, Ti ⊕G, Ti ⊕H and
G⊕H

5.1. TheT1⊕ T2 system

From (21) it is clear that the group generators for the (T1⊕ T2) direct sum problem will be
the electronic operators transforming as the odd irrepsT1 andT2. Within their respective
Kronecker product spaces,T1⊗T1 andT2⊗T2, these generators act in the manner described
by Pooler, generating SO(3) symmetry. It will now be of interest to consider the operators
existing in theT1 ⊗ T2 andT2 ⊗ T1 product spaces as these will carry non-trivial irreps of
the larger continuous group referred to generally asG1⊗G2 in section 4.

The six odd operators may be written as

(T1+ 1(T1, T1)) (T2+ 2(T2, T2))

(T1 0(T1, T1)) (T2 0(T2, T2)) (22)

(T1− 1(T1, T1)) (T2− 2(T2, T2))

where the numerical labelling of the basis within an irrep is that of Pooler [10] and the
operator notation follows (15). Generators of SO(3) and SO(4) may now be defined,

S0 = −
√

2i(T1 0(T1, T1)) L0 = −
√

2i(T2 0(T2, T2))

S± = 2i(T1± 1(T1, T1)) L± = 2i(T2∓ 2(T2, T2))
(23)

where (S±, S0) and (L±, L0) separately satisfy the usual SO(3) commutation relations and
also commute with each other.

Under commutation with the non-shift operators (S0, L0) the highest weights may be
found for each type of electronic operator. The irreps of SO(4) may then be associated with
the electronic operators as follows:

(10)→ T1 (01)→ T2 (00)→ A (20)→ H

(02)→ H (11)→ G⊕H (24)

(where (si li) indicates the highest eigenvalues ofS0, L0 for a given irrep) so that (21) may
be written

{(10)⊕ (01)} ⊗ {(10)⊕ (01)} = {(00)⊕ (20)⊕ (10)} ⊕ {(00)⊕ (02)⊕ (01)} ⊕ 2(11).

(25)

TheG⊕H operators defined onT1⊗ T2 andT2⊗ T1 carry the irrep (11) of SO(4).
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In the following work the notationJHi ≡ (H i(T1, T2)) or (H i(T2, T1)) will be used
for brevity, with a similar expression for theG operators. The labelling of the basis within
an irrep is again that of Pooler. In constructing an invariant Hamiltonian it is possible to
use the operators (λ i(T1, T2)) or (λ i(T2, T1)). The icosahedral operators embed in the
(11) irrep of SO(4) in the same way for each case, so that it is not necessary to specify
which set is being used when considering the formation of the invariant Hamiltonians.

From the observation that [S0, J
H
0 ] = 0 and [L0, J

H
0 ] = 0 it is seen thatJH0 transforms

as the(0, 0) component of some SO(4) irrep. Using theS± andL± generators it is possible
under commutation to produce all the other components of the irrep as well as demonstrating
that (1, 1) is the highest weight so that (11) labels the irrep. The operators carrying the (11)
irrep are expressed in terms of the icosahedral operators as follows:

J
(11)
11 =

1√
3
(
√

2JH−1− iJG−1) J
(11)
01 =

1√
3
(JH−2−

√
2iJG−2)

J
(11)
10 =

1√
3
(−JH1 +

√
2iJG1 )

J
(11)
−11 =

1√
3
(
√

2JH2 − iJG2 ) J
(11)
1−1 =

1√
3
(
√

2JH−2+ iJG−2)

J
(11)
−10 =

1√
3
(JH−1+

√
2iJG−1)

J
(11)
0−1 =

1√
3
(−JH2 −

√
2iJG2 ) J

(11)
−1−1 =

1√
3
(
√

2JH1 + iJG1 ) J
(11)
00 = JH0 . (26)

It is also of interest to construct a set of operators transforming as irreps of the SO(3)
group under one set of SO(3) generators. As a particular example, the S generators are
chosen in what follows. The L generators could equally have been chosen.

Under the action of the S generators it is possible to divide the nine basis operators of
the (11) irrep into three SO(3) irreps with weight 1

T
(1)

0 = J (11)
00 T̃

(1)
0 = J (11)

01
˜̃
T
(1)

0 = J (11)
0−1

T
(1)

1 = J (11)
10 and T̃

(1)
1 = J (11)

11 and ˜̃
T
(1)

1 = J (11)
1−1

T
(1)
−1 = J (11)

−10 T̃
(1)
−1 = J (11)

−11
˜̃
T
(1)

−1 = J (11)
−1−1.

(27)

It is found, however, that if the three possible SO(3) invariant Hamiltonians{T (1)Q(1)}00,

{T̃ (1)Q̃(1)}00 and { ˜̃T
(1) ˜̃
Q
(1)
}00 are formed, their sum does not produce the form of the

icosahedral invariantG⊕H Hamiltonian. Instead, if linear combinations of the nine SO(3)
operators are taken, it is possible to produce three weight 1 SO(3) irreps whose invariant
Hamiltonians may be combined to give the equal coupling icosahedral invariantG ⊕ H
Hamiltonian. These linear combinations may be expressed as

H
(1)+
i = 1√

2

(
J
(11)
i0 +

1√
2
(J

(11)
i1 − J (11)

i−1 )

)
H
(1)−
i = 1√

2

(
1√
2
(J

(11)
i1 − J (11)

i−1 )− J (11)
i0

)
(28)

T
(1)′
i = 1√

2
(J

(11)
i1 + J (11)

i−1 )

wherei = ±1, 0 in each case and in (28)H(1)+ andH(1)− are two weight 1 SO(3) irreps
(theH here does not refer to icosahedral irrep labelling). Using these operators then the
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Hamiltonians invariant under SO(4), SO(3) and I are related respectively by

3{J (11)Q(11)}(00)
00 =

√
3({T (1)′Q(1)′ }(0)0 − {H(1)+Q(1)+}(0)0 − {H(1)−Q(1)−}(0)0 )

=
√

5{JHQH }A0 + 2{JGQG}A0
(29)

where from the general tensor coupling relation of (5)∑
m1,m2

(−1)j1−m1(−1)j2−m2J (j1j2)
m1m2

Q
(j1j2)
−m1−m2

= {J (j1j2)Q(j1j2)}(00)
00 (|j1||j2|) 1

2

∑
m

(−1)j−mJ (j)m Q
(j)
−m = {J (j)Q(j)}(0)0 |j |

1
2 (30)∑

i

J λi Q
λ
−i = {J λQλ}A0 |λ|

1
2 .

Hence, it is possible to create a(T1 ⊕ T2) ⊗ (g ⊕ h) linear JT Hamiltonian that is
simultaneously invariant under SO(4) and SO(3) as well as I.

5.2. TheT1⊕G andT2⊕G systems

5.2.1.T1⊕G. Consider the Kronecker product,

(T1⊕G)⊗ (T1⊕G) = (T1⊗ T1)⊕ (G⊗G)⊕ (T1⊗G)⊕ (G⊗ T1)

= ([A⊕H ]S⊕ {T1}A)⊕ ([A⊕G⊕H ]S⊕ {T1⊕ T2}A)⊕ 2(T2⊕G⊕H).
(31)

From this it is clear that the generators for the problem will be theT1 operators within the
T1⊗ T1 product space and theT1 andT2 operators within theG⊗G product space. Pooler
[11] demonstrated that these generate the groups SO(3) and SO(4) respectively; hence the
operators defined on the product spaceT1 ⊗ G or G ⊗ T1 will, from the discussion in
section 4, carry irreps of the group SO(3)⊗ SO(4).

The generators of SO(3) and SO(4) may be written

J0 = −
√

2i(T1 0(T1, T1)) L0 = i(T2 0(G,G)) S0 = i(T1 0(G,G))

J± = 2i(T1± 1(T1, T1)) L± =
√

2i(T2± 2(G,G)) S± =
√

2i(T1± 1(G,G))

(32)

where (J0, J±), (L0, L±) and (S0, S±) separately satisfy the usual SO(3) commutation
relations and also commute with each other.

Under commutation with the non-shift operators (J0, L0, S0) the highest weights may
be found for each type of electronic operator. The irreps of SO(3) ⊗ SO(4) may then be
associated with the icosahedral irreps as follows:

(1(00))→ T1 (0(00))→ A (2(00))→ H (0(11))→ G⊕H
(0(10))→ T1 (0(01))→ T2 (0( 1

2
1
2))→ G

(1( 1
2

1
2))→ T2⊕G⊕H (33)

(where (ji(lisi)) indicates the highest eigenvalues of (J0, L0, S0) for a given irrep) so that
(31) may be written

{(1(00))⊕ (0( 1
2

1
2))} ⊗ {(1(00))⊕ (0( 1

2
1
2))}

= {(0(00))⊕ (2(00))⊕ (1(00))} ⊕ {(0(00))⊕ (0(11))⊕ (0(10))⊕ (0(01))}
⊕2(1( 1

2
1
2)). (34)
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The T2 ⊕ G ⊕ H operators defined onT1 ⊗ G or G ⊗ T1 carry the irrep (1( 1
2

1
2)) of

SO(3)⊗ SO(4).
The embedding of the icosahedral operatorsT2, G andH in the irrep (1( 1

2
1
2)) is given

in section A.3 of the appendix both for operators defined on the (T1,G) and (G, T1) ket–bra
basis where the notationJ3i = (3i(T1,G)) andJ3i = (3i(G, T1)) is adopted for brevity
there and in what now follows.

Using the operators given in section A.3, the Hamiltonians invariant under
SO(3)⊗ SO(4) and I are related by,

2
√

3{J (1( 1
2

1
2 ))Q(1( 1

2
1
2 ))}(0(00))

000 =
√

5{JHQH }A0 + 2{JGQG}A0 +
√

3{J T2QT2}A0 (35)

where∑
m1,m2,m3

(−1)j1−m1(−1)j2−m2(−1)j3−m3J (j1j2j3)
m1m2m3

Q
(j1j2j3)
−m1−m2−m3

= {J (j1j2j3)Q(j1j2j3)}(000)
000 (|j1||j2||j3|) 1

2

(36)

and ∑
i

J λi Q
λ
−i = {J λQλ}A0 |λ|

1
2 . (37)

Hence, it is possible to create a(T1 ⊕ G) ⊗ (t2 ⊕ g ⊕ h) linear JT Hamiltonian that is
simultaneously invariant under SO(3)⊗ SO(4) as well as I. This system may be expressed
in the SO(3)⊗ SO(4) notation as,

{(1(00))⊕ (0( 1
2

1
2))} ⊗ (1( 1

2
1
2)). (38)

5.2.2.T2⊕G. Consider the Kronecker product,

(T2⊕G)⊗ (T2⊕G) = (T2⊗ T2)⊕ (G⊗G)⊕ (T2⊗G)⊕ (G⊗ T2)

= ([A⊕H ]S⊕ {T2}A)⊕ ([A⊕G⊕H ]S⊕ {T1⊕ T2}A)
⊕2(T1⊕G⊕H). (39)

From this it is clear that the generators for the problem will be theT2 operators within
the T2 ⊗ T2 product space and theT1 and T2 operators within theG ⊗ G product space.
Pooler [11] demonstrated that theT2 operators generate the group SO(3), hence the operators
defined on the product spaceT2⊗G or G⊗ T2 will, from the discussion in section 4, carry
irreps of the group SO(3)⊗ SO(4).

The SO(4) generators have been given in section 5.2.1 and the SO(3) generators in
section 5.1 may be written

J0 = −
√

2i(T2 0(T2, T2))

J± = 2i(T2∓ 2(T2, T2)).
(40)

Under commutation with the non-shift operators (J0, L0, S0) the highest weights may be
found for each type of electronic operator. The irreps of SO(3) ⊗ SO(4) may then be
associated with the icosahedral irreps as follows,

(1(00))→ T2 (0(00))→ A (2(00))→ H (0(11))→ G⊕H
(0(10))→ T1 (0(01))→ T2 (0( 1

2
1
2))→ G (1( 1

2
1
2))→ T1⊕G⊕H

(41)

so that (39) may be written

{(1(00))⊕ (0( 1
2

1
2))} ⊗ {(1(00))⊕ (0( 1

2
1
2))}

= {(0(00))⊕ (2(00))⊕ (1(00))} ⊕ {(0(00))⊕ (0(11))⊕ (0(10))⊕ (0(01))}
⊕2(1( 1

2
1
2)). (42)
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The T1 ⊕ G ⊕ H operators defined onT2 ⊗ G or G ⊗ T2 carry the irrep (1( 1
2

1
2)) of

SO(3)⊗ SO(4).
The embedding of the icosahedral operatorsT1, G andH in the irrep (1( 1

2
1
2)) is given

in section A.3 both for the operators defined on the (T2,G) and (G, T2) ket–bra basis where
the notationJ3i = (3i(T2,G)) andJ3i = (3i(G, T2)) is adopted for brevity there and in
what now follows.

Using the operators defined in section A.3, the Hamiltonians invariant under SO(3) ⊗
SO(4) and I are related by

2
√

3{J (1( 1
2

1
2 ))Q(1( 1

2
1
2 ))}(0(00))

000 =
√

5{JHQH }A0 + 2{JGQG}A0 +
√

3{J T1QT1}A0 . (43)

Hence, it is possible to create a(T2 ⊕ G) ⊗ (t1 ⊕ g ⊕ h) linear JT Hamiltonian that is
simultaneously invariant under SO(3)⊗ SO(4) as well as I. This system may (as with the
(T1⊕G) model) be expressed in the SO(3)⊗ SO(4) notation as

{(1(00))⊕ (0( 1
2

1
2))} ⊗ (1( 1

2
1
2)). (44)

5.3. TheT1⊕H andT2⊕H systems

5.3.1. (T1⊕H). Consider the Kronecker product,

(T1⊕H)⊗ (T1⊕H) = (T1⊗ T1)⊕ (H ⊗H)⊕ (T1⊗H)⊕ (H ⊗ T1)

= ([A⊕H ]S⊕ {T1}A)⊕ ([A⊕ 2G⊕ 1H ⊕ 2H ]S (45)

⊕{T1⊕ T2⊕ 1G}A)⊕ 2(T1⊕ T2⊕G⊕H)
where the multiplicity labels of Pooler [11] have been used in theH ⊗H product.

From this it is clear that the generators for the problem will be theT1 operators within
theT1⊗ T1 product space and theT1, T2 andG operators within theH ⊗H product space.
Pooler [11] demonstrated that the generators within theH ⊗ H space generate the group
SO(5); hence the operators defined on the product spaceT1⊗H or H ⊗ T1 will, from the
discussion in section 4, carry irreps of the group SO(3) ⊗ SO(5). The generators of the
SO(3) group were given in section 5.2. Using a result of Pooler ([11] equation (4.4)) which
derives from the work of Judd [6], the generators of the group SO(5) may be expressed in
the Cartan–Weyl basis as

Wγγ ′ =
∑
r3λ

(1− θ(HH3r))[3]
1
2

(
H λ γ ′

γ 3 H

)r
(r3λ(H,H))

= |Hγ 〉〈Hγ ′| − |H − γ ′〉〈H − γ |
(46)

where the sum is over the odd irreps of theH ⊗ H Kronecker product. There are two
non-shift operators,W22 andW11, whose eigenvalues may be used to characterize irreps of
the group SO(5). The basis within an irrep may be specified by the pair of eigenvalues of
(W22,W11) which is otherwise known as the ‘weight’. The irrep as a whole is specified by
giving the ‘highest’ weight associated with a basis state within the irrep. (A weight (w1w2)
is ‘higher’ than a weight (w′1w

′
2) if w1 > w′1 or if w1 = w′1, w2 > w′2.) TheWγγ ′ are not

linearly independent asW−γ ′−γ = −Wγγ ′ . The following set of generators in addition to
the two non-shift operators,W22 andW11, form a linearly independent set which generates
the group SO(5),

W+− = W21 W−− = W−12 W0− = W01 W+0 = W20

W++ = W2−1 W−+ = W12 W0+ = W10 W−0 = W02.
(47)
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In the above, the way in which each shift operator affects the weight of a state on which it
acts has been indicated, with+, − and 0 indicating a change in the weight of+1, −1 and
0, respectively.

Under commutation with the non-shift operators (J0,W22,W11) the highest weights may
be found for each type of electronic operator. The irreps of SO(3) ⊗ SO(5) may then be
associated with the icosahedral irreps as follows:

(0[00])→ A (2[00])→ H (1[00])→ T1

(0[10])→ H (0[20])→ 2G⊕ 1H ⊕ 2H (0[11])→ T1⊕ T2⊕ 1G

(1[10])→ T1⊕ T2⊕G⊕H (48)

(where(ji [w22iw11i ]) indicates the highest eigenvalues of (J0,W22,W11) for a given irrep)
so that (45) may be written

{(1[00])⊕ (0[10])} ⊗ {(1[00])⊕ (0[10])}
= {(0[00])⊕ (2[00])⊕ (1[00])} ⊕ {(0[00])⊕ (0[20])⊕ (0[11])} ⊕ 2(1[10]).

(49)

The T1 ⊕ T2 ⊕ G ⊕ H operators defined onT1 ⊗ H or H ⊗ T1 carry the irrep (1[10]) of
SO(3)⊗ SO(5).

The embedding of the icosahedral operatorsT1, T2, G andH in the irrep (1[10]) is
given in section A.4 both for the operators defined on the (T1, H ) and (H, T1) ket–bra basis
where the notationJ3i = (3i(T1, H)) andJ3i = (3i(H, T1)) is adopted for brevity there
and in what now follows.

Using the operators given in section A.4, the Hamiltonians invariant under
SO(3)⊗ SO(5) and I are related by
√

15{J (1[10])Q(1[10])}(0[00])
000

= (
√

5{JHQH }A0 + 2{JGQG}A0 +
√

3{J T1QT1}A0 +
√

3{J T2QT2}A0 ). (50)

The SO(3) ⊗ SO(5) invariant is constructed by taking the product of an SO(3) invariant
with an SO(5) invariant as follows,

√
15{J (1[10])Q(1[10])}(0[00])

000 =
√

3{J (1)Q(1)}(0)0

√
5{J [10]Q[10]}[00]

00 (51)

where∑
m

(−1)j−mJ (j)m Q
(j)
−m = {J (j)Q(j)}(0)0 |j |

1
2 (52)

{J [10]Q[10]}[00]
00 =

∑
α1,β1,α2,β2

〈[10](α1β1); [10](α2β2)|[00](00)〉J [10]
α1β1

Q
[10]
α2β2

(53)

and an SO(3)⊗SO(5) operator is constructed out of the product of an SO(3) operator with
an SO(5) operator,

J (j1[j2j3])
m1m2m3

= J (j1)
m1
J [j2j3]
m2m3

. (54)

In (53) the right-hand side contains the SO(5) Wigner coefficients. Hecht [5] expresses
these Wigner coefficients as the product of a ‘double-barred’ Wigner coefficient with two
ordinary SO(3) Wigner coefficients, and provides some tables of the double-barred Wigner
coefficients including the ones involved in (53). In using the tables of Hecht it is necessary to
transform to a different basis to the one used in the above work. The basis that has been used
for the Cartan subalgebra in this paper is related to that of Hecht [5] viaJ0 = 1

2(W22+W11)
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and30 = 1
2(W22 − W11). Using the tables of Hecht the SO(5) invariant in (53) may be

expressed as
√

5{J [10]Q[10]}[00]
00 = (J [10]

10 Q
[10]
−10+ J [10]

−10Q
[10]
10 + J [10]

00 Q
[10]
00 − J [10]

01 Q
[10]
0−1− J [10]

0−1Q
[10]
01 ). (55)

Hence, it is possible to create a(T1⊕H)⊗(t1⊕ t2⊕g⊕h) linear JT Hamiltonian that is
simultaneously invariant under SO(3)⊗ SO(5) as well as I. This system may be expressed
in the SO(3)⊗ SO(5) notation as

{(1[00])⊕ (0[10])} ⊗ (1[10]). (56)

5.3.2. (T2⊕H). Consider the Kronecker product,

(T2⊕H)⊗ (T2⊕H) = (T2⊗ T2)⊕ (H ⊗H)⊕ (T2⊗H)⊕ (H ⊗ T2)

= ([A⊕H ]S⊕ {T2}A)⊕ ([A⊕ 2G⊕ 1H ⊕ 2H ]S (57)

⊕{T1⊕ T2⊕ 1G}A)⊕ 2(T1⊕ T2⊕G⊕H)
where the multiplicity labels of Pooler [10] have been used in theH ⊗H product.

From this it is clear that the generators for the problem will be theT2 operators on the
T2 ⊗ T2 product space and theT1, T2 andG operators within theH ⊗ H product space;
hence from sections 5.3.1 and 5.1 the operators defined on the product spaceT2 ⊗ H or
H ⊗ T2 will, from the discussion in section 4, carry irreps of the group SO(3)⊗ SO(5).

Under commutation with the non-shift operators (J0,W22,W11) (whereJ0 now refers
to the operator−√2i(T2 0(T2, T2)) of (23)) the highest weights may be found for each
type of electronic operator. The irreps of SO(3)⊗ SO(5) may then be associated with the
icosahedral irreps as follows:

(0[00])→ A (2[00])→ H (1[00])→ T2

(0[10])→ H (0[20])→ 2G⊕ 1H ⊕ 2H (0[11])→ T1⊕ T2⊕ 1G

(1[10])→ T1⊕ T2⊕G⊕H (58)

so that (57) may be written

{(1[00])⊕ (0[10])} ⊗ {(1[00])⊕ (0[10])}
= {(0[00])⊕ (2[00])⊕ (1[00])} ⊕ {(0[00])⊕ (0[20])⊕ (0[11])} ⊕ 2(1[10]).

(59)

The T1 ⊕ T2 ⊕ G ⊕ H operators defined onT2 ⊗ H or H ⊗ T2 carry the irrep (1[10]) of
SO(3)⊗ SO(5).

The embedding of the icosahedral operatorsT1, T2, G andH in the irrep (1[10]) is
given in section A.4 both for the operators defined on the (T2, H ) and (H, T2) ket–bra basis
where the notationJ3i = (3i(T2, H)) andJ3i = (3i(H, T2)) is adopted for brevity there
and in what now follows.

Using the operators given in section A.4, the Hamiltonians invariant under
SO(3)⊗ SO(5) and I are related by
√

15{J (1[10])Q(1[10])}(0[00])
000

= (
√

5{JHQH }A0 + 2{JGQG}A0 +
√

3{J T1QT1}A0 +
√

3{J T2QT2}A0 ). (60)

Hence, it is possible to create a(T2⊕H)⊗ (t1⊕ t2⊕ g ⊕ h) linear JT Hamiltonian that is
simultaneously invariant under SO(3)⊗ SO(5) as well as I. This system may (as with the
(T1⊕H ) model) be expressed in the SO(3)⊗ SO(5) notation as

{(1[00])⊕ (0[10])} ⊗ (1[10]). (61)
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5.4. TheG⊕H system

Consider the Kronecker product,

(G⊕H)⊗ (G⊕H) = (G⊗G)⊕ (H ⊗H)⊕ (G⊗H)⊕ (H ⊗G)
= ([A⊕G⊕H ]S⊕ {T1⊕ T2}A)⊕ ([A⊕ 2G⊕ 1H ⊕ 2H ]S

⊕{T1⊕ T2⊕ 1G}A)⊕ 2(T1⊕ T2⊕G⊕ 1H ⊕ 2H). (62)

From this it is clear that the generators for the problem will be theT1 andT2 operators
within theG⊗G product space and theT1, T2 andG operators within theH ⊗H product
space. Hence, the operators defined on the product spaceG⊗H or H ⊗G will, from the
discussion in section 4, carry irreps of the group SO(4)⊗ SO(5). The generators of SO(4)
and SO(5) were given in sections 5.2 and 5.3, respectively.

Under commutation with the non-shift operators (L0, S0,W22,W11) the highest weights
may be found for each type of electronic operator. The irreps of SO(4)⊗ SO(5) may then
be associated with the icosahedral irreps as follows,

((00)[00])→ A ((11)[00])→ G⊕H ((10)[00])→ T1

((01)[00])→ T2 (( 1
2

1
2)[00])→ G ((00[20])→ 2G⊕ 1H ⊕ 2H

((00)[10])→ H ((00)[11])→ T1⊕ T2⊕ 1G

(( 1
2

1
2)[10])→ T1⊕ T2⊕G⊕ 1H ⊕ 2H (63)

so that (62) may be written

{(( 1
2

1
2)[00])⊕ ((00)[10])} ⊗ {(( 1

2
1
2)[00])⊕ ((00)[10])}

= {((00)[00])⊕ ((11)[00])⊕ ((10)[00])⊕ ((01)[00])} (64)

⊕{((00)[00])⊕ ((00)[20])⊕ ((00)[11])} ⊕ 2(( 1
2

1
2)[10]).

TheT1⊕T2⊕G⊕1H⊕2H operators defined onG⊗H orH⊗G carry the irrep (( 1
2

1
2)[10])

of SO(4)⊗ SO(5).
The embedding of the icosahedral operatorsT1, T2,G, 1H and2H in the irrep (( 1

2
1
2)[10])

is given in the appendix section A.5 both for operators defined on the (G,H ) and (H,G)
ket–bra basis where the notationJ3i = (3i(G,H)) andJ3i = (3i(H,G)) is adopted for
brevity there and in what now follows.

Using the operators given in section A.5, the Hamiltonians invariant under
SO(4)⊗ SO(5) and I are related by√

20{J (( 1
2

1
2 )[10])Q(( 1

2
1
2 )[10])}((00)[00])

0000

=
√

3{J T1QT1}A0 +
√

3{J T2QT2}A0 + 2{JGQG}A0 +
√

5{J 1HQ
1H }A0

+
√

5{J 2HQ
2H }A0 . (65)

The SO(4) ⊗ SO(5) invariant is constructed by taking the product of an SO(4) invariant
with an SO(5) invariant as follows,√

20{J (( 1
2

1
2 )[10])Q(( 1

2
1
2 )[10])}((00)[00])

0000 = 2{J ( 1
2

1
2 )Q( 1

2
1
2 )}(00)

00

√
5{J [10]Q[00]}[00]

00 (66)

where ∑
m1,m2

(−1)j1−m1(−1)j2−m2J (j1j2)
m1m2

Q
(j1j2)
−m1−m2

= {J (j1j2)Q(j1j2)}(00)
00 (|j1||j2|) 1

2 . (67)

Hence, it is possible to create a(G⊕H)⊗ (t1⊕ t2⊕g⊕ 1h⊕ 2h) linear JT Hamiltonian
that is simultaneously invariant under SO(4) ⊗ SO(5) as well as I. This system may be
expressed in the SO(4)⊗ SO(5) notation as

{(( 1
2

1
2)[00])⊕ ((00)[10])} ⊗ (( 1

2
1
2)[10]). (68)



7662 R D Wiseman

6. Conclusion

It has been shown that electronic operators may be defined upon an electronic space which
is a direct sum of two or more irreducible spaces of a real character simple phase group
(examples of which are the icosahedral group and the octahedral group) in such a way
that there exist operators which are closed under commutation with a set of generators
of a continuous group and hence carry irreps of that group. These operators are then
coupled to a set of vibrational modes defined to transform in the same way, so that a JT
Hamiltonian, which is invariant under simultaneous operations of the continuous group in
electronic and vibrational space, is formed. This extends the work of Pooler [11] which
considered operators defined on a single irreducible space. Within the icosahedral group the
continuous groups generated on the two irrep direct sum spaces (T1⊕T2), (Ti⊕G), (Ti⊕H )
and (G⊕H ) were presented in detail. JT systems of the type(0i⊕0j )⊗6λ that may occur
in the neutral C60 exciton spectrum exhibit these continuous group invariances and future
work will exploit these additional group symmetries in order to treat the strong JT ground
states of such systems analytically within the Born–Oppenheimer adiabatic approximation.
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Appendix

A.1. Derivation of equation (16)

Consider the transformation of the linear operator basis,

|x1λ1i〉〈x2λ2i2| (69)

under the action of the group

OR|x1λ1i1〉〈x2λ2i2|OR−1 = OR|x1λ1i1〉(O†R−1|x2λ2i2〉)†
=
∑
j1j2

|x1λ1j1〉〈x2λ2j2|λ(R)j1i1λ(R)
j2i2. (70)

This is (15.2) of [1].
Using this equation, the transformation of the operator

(rλi(x1λ1, x2λ2)) = |λ| 12 (λ1λλ2)
i1
r ii2
|x1λ1i1〉〈x2λ2i2| (71)

under the group action may be obtained. The left-hand side of (16) may be expressed as

|λ| 12 (λ1λλ2)
i1
r ii2

OR|x1λ1i1〉〈x2λ2i2|OR−1

= |λ| 12 (λ)i1j1(λ∗1λλ2)rj1ii2

∑
j ′1j
′
2

|x1λ1j
′
1〉〈x2λ2j

′
2|λ1(R)j ′1i1λ2(R)

j ′2i2 (72)

where the summation overj ′1 andj ′2 is made explicit for clarity. Using (4.4) of [1] and the
unitarity of the 1-jm symbols it may be demonstrated that

(λ1)
i1j1λ1(R)j ′1i1 = (λ1)

j ′1i1λ∗1(R)
i1j1. (73)
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Inserting this result into (72) then the left-hand side of (16) becomes

=
∑
j ′1j
′
2

|λ| 12 (λ1)
j ′1i1(λ∗1λλ2)rj1ii2λ

∗
1(R)

i1j1λ2(R)
j ′2i2|x1λ1j

′
1〉〈x2λ2j

′
2|. (74)

Suppose that the result

(λ∗1λλ2)rj1ii2λ
∗
1(R)

i1j1λ2(R)
j ′2i2 = (λ∗1λλ2)ri1jj ′2λ(R)ji (75)

could be demonstrated. On substituting this into (74) and dropping the explicitj ′1, j ′2
summation, the result

|λ| 12 (λ∗1λλ2)
j ′1
r jj ′2
|x1λ1j

′
1〉〈x2λ2j

′
2|λ(R)ji = (rλi(x1λ1, x2λ2))λ(R)ji (76)

is obtained, which is precisely the right-hand side of (16). Thus to complete the proof,
equation (75) must be demonstrated.

From (5.7) of [1],

(λ1λ2λ3)ri1i2i3λ1(R)i1j1λ2(R)i2j2 = λ3(R)
i3j3(λ1λ2λ3)rj1j2j3 (77)

which is essentially a statement about the reducibility of a direct product of two irreps into
a sum of irreps. Multiplying (77) byλ1(R)

i ′1j1 and summing overj1 using the unitarity of
the irrep matrices,

(λ1λ2λ3)ri1i2i3λ2(R)i2j2 = λ1(R)
i1j1λ3(R)

i3j3(λ1λ2λ3)rj1j2j3 (78)

which is precisely equation (75) and hence completes the proof.

A.2. Derivation of equation (18)

Consider the unitarity relation (5.6) of [1] for the 3-jm symbols,∑
λ3

|λ3|(λ∗1λ2λ3)rj1j2j3(λ
∗
1λ2λ3)

rj ′1j
′
2j3 = δj1j

′
1
δj2j

′
2
. (79)

Multiplying both sides by(λ1)
i1j1(λ1)i ′1j

′
1

and summing overj1 andj ′1 using (8.1) of [1], the
unitarity of the 1-jm symbols and the theorem that the multiplicity tensorArs may always
be chosen to equalδrs for groups for which (8.10) of [1] holds, the result,∑

λ3

|λ3|(λ1λ2λ3)
j1
r j2j3

(λ1λ2λ3)
j ′2j3

rj ′1
= δj1j

′
1
δj2j

′
2

(80)

is obtained. Multiplying (9.12) of [1] by|λ3|(µ1µ2λ3)
j ′2i3

r3j
′
1

and summing overλ3, using
(80), then the result,

(λ1µ2µ3)
j2

r1i1 j3
(µ1λ2µ3)

j3
r2j1i2

=
∑
λ3

|λ3|(µ1µ2λ3)
j2i3

r3j1
(λ1λ2λ3)r4i1i2i3

{
λ1 λ2 λ3

µ1 µ2 µ3

}
r1r2r3r4

(81)

is obtained.
Clearly the left-hand side of (81) is related to parts of the right-hand side of (17).

Permuting the columns on the left-hand side of (81) and using the fact thatθ = ±1 for
simple phase groups,

(µ2λ1µ3)
j2
r1 i1j3

(µ3λ2µ1)
j3
r2 i2j1

=
∑
λ3

|λ3|(µ1µ2λ3)
j2i3

r3j1
(λ1λ2λ3)r4i1i2i3

{
λ1 λ2 λ3

µ1 µ2 µ3

}
r1r2r3r4

(82)

×θ(µ∗2λ1µ3r1)θ(µ
∗
3λ2µ1r2).
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Using the unitarity of the 1-jm symbols, the equation (8.1) of [1] and permuting columns,
the result

(µ1µ2λ3)
j2i3

r3j1
(λ1λ2λ3)r4i1i2i3 = (µ2λ

∗
3µ1)

j2
r3 jj1

(λ1λ2λ
∗
3)

j

r4i1i2
(83)

may be obtained, which when substituted into (82) produces the final result,

(µ2λ1µ3)
j2
r1 i1j3

(µ3λ2µ1)
j3
r2 i2j1

=
∑
λ3

|λ3|(µ2λ
∗
3µ1)

j2
r3 jj1

(λ1λ2λ
∗
3)

j

r4i1i2

{
λ1 λ2 λ3

µ1 µ2 µ3

}
r1r2r3r4

(84)

×θ(µ∗2λ1µ3r1)θ(µ
∗
3λ2µ1r2).

In the case of a real character group, using this result in the right-hand side of (17) then
(18) is obtained.

A.3. Embedding of the (T1,G), (G, T1), (T2,G) and (G, T2) icosahedral operators

A.3.1. (T1,G). The embedding of the icosahedral operatorsT2, G andH in the irrep
(1( 1

2
1
2)) is as follows:

J
(1( 1

2
1
2 ))

1 1
2

1
2
= 1

2(J
T2
−2−
√

3iJH−2) J
(1( 1

2
1
2 ))

0 1
2

1
2
= 1√

6
(
√

3J T2
2 −
√

2JG2 − iJH2 )

J
(1( 1

2
1
2 ))

−1 1
2

1
2
= 1√

3
(−
√

2JG1 + iJH1 ) J
(1( 1

2
1
2 ))

1 1
2− 1

2
= 1

2
√

3
(iJH2 − 2

√
2JG2 −

√
3J T2

2 )

J
(1( 1

2
1
2 ))

0 1
2− 1

2
= 1√

3
(−
√

2iJH1 − JG1 ) J
(1( 1

2
1
2 ))

−1 1
2− 1

2
= 1√

2
(iJH0 + J T2

0 )

J
(1( 1

2
1
2 ))

1− 1
2

1
2
= 1√

2
(iJH0 − J T2

0 ) J
(1( 1

2
1
2 ))

0− 1
2

1
2
= 1√

3
(
√

2iJH−1− JG−1)

J
(1( 1

2
1
2 ))

−1− 1
2

1
2
= 1

2
√

3
(iJH−2+ 2

√
2JG−2+

√
3J T2
−2) J

(1( 1
2

1
2 ))

1− 1
2− 1

2
= 1√

3
(−iJH−1−

√
2JG−1)

J
(1( 1

2
1
2 ))

0− 1
2− 1

2
= 1√

6
(−
√

3J T2
−2+
√

2JG−2− iJH−2) J
(1( 1

2
1
2 ))

−1− 1
2− 1

2
= 1

2(
√

3iJH2 + J T2
2 ) (85)

where the notationJ3i = (3i(T1,G)) is adopted for brevity.

A.3.2. (G, T1). The embedding of the icosahedral operatorsT2, G andH in the irrep
(1( 1

2
1
2)) is as follows:

J
(1( 1

2
1
2 ))

1 1
2

1
2
= 1

2(J
T2
−2+
√

3iJH−2) J
(1( 1

2
1
2 ))

0 1
2

1
2
= 1√

6
(
√

3J T2
2 +
√

2JG2 + iJH2 )

J
(1( 1

2
1
2 ))

−1 1
2

1
2
= 1√

3
(
√

2JG1 − iJH1 ) J
(1( 1

2
1
2 ))

1 1
2− 1

2
= 1

2
√

3
(−
√

3J T2
2 + 2

√
2JG2 − iJH2 )

J
(1( 1

2
1
2 ))

0 1
2− 1

2
= 1√

3
(−
√

2iJH1 − JG1 ) J
(1( 1

2
1
2 ))

−1 1
2− 1

2
= 1√

2
(−J T2

0 + iJH0 )

J
(1( 1

2
1
2 ))

1− 1
2

1
2
= 1√

2
(J

T2
0 + iJH0 ) J

(1( 1
2

1
2 ))

0− 1
2

1
2
= 1√

3
(
√

2iJH−1− JG−1)

J
(1( 1

2
1
2 ))

−1− 1
2

1
2
= 1

2
√

3
(−iJH−2− 2

√
2JG−2+

√
3J T2
−2) J

(1( 1
2

1
2 ))

1− 1
2− 1

2
= 1√

3
(
√

2JG−1+ iJH−1)

J
(1( 1

2
1
2 ))

0− 1
2− 1

2
= 1√

6
(−
√

3J T2
−2−
√

2JG−2+ iJH−2) J
(1( 1

2
1
2 ))

−1− 1
2− 1

2
= 1

2(J
T2
2 −
√

3iJH2 ) (86)

where the notationJ3i = (3i(G, T1)) is adopted for brevity.
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A.3.3. (T2,G). The embedding of the icosahedral operatorsT1, G andH in the irrep
(1( 1

2
1
2)) is as follows:

J
(1( 1

2
1
2 ))

1 1
2

1
2
= 1√

2
(JH0 − iJ T1

0 ) J
(1( 1

2
1
2 ))

0 1
2

1
2
= 1√

3
(iJG2 −

√
2JH2 )

J
(1( 1

2
1
2 ))

−1 1
2

1
2
= 1

2
√

3
(
√

3iJ T1
−1+ 2

√
2iJG−1− JH−1) J

(1( 1
2

1
2 ))

1 1
2− 1

2
= 1

2(iJ
T1
−1+
√

3JH−1)

J
(1( 1

2
1
2 ))

0 1
2− 1

2
= 1√

6
(
√

3iJ T1
1 −
√

2iJG1 + JH1 ) J
(1( 1

2
1
2 ))

−1 1
2− 1

2
= 1√

3
(
√

2iJG−2− JH−2)

J
(1( 1

2
1
2 ))

1− 1
2

1
2
= 1√

3
(
√

2iJG2 + JH2 ) J
(1( 1

2
1
2 ))

0− 1
2

1
2
= 1√

6
(−
√

3iJ T1
−1+
√

2iJG−1+ JH−1)

J
(1( 1

2
1
2 ))

−1− 1
2

1
2
= 1

2(iJ
T1
1 −
√

3JH1 ) J
(1( 1

2
1
2 ))

1− 1
2− 1

2
= 1

2
√

3
(−
√

3iJ T1
1 − 2

√
2iJG1 − JH1 )

J
(1( 1

2
1
2 ))

0− 1
2− 1

2
= 1√

3
(iJG−2+

√
2JH−2) J

(1( 1
2

1
2 ))

−1− 1
2− 1

2
= 1√

2
(iJ

T1
0 + JH0 ) (87)

where the notationJ3i = (3i(T2,G)) is adopted for brevity.

A.3.4. (G, T2). The embedding of the icosahedral operatorsT1, G andH in the irrep
(1( 1

2
1
2)) is as follows:

J
(1( 1

2
1
2 ))

1 1
2

1
2
= 1√

2
(iJ

T1
0 + JH0 ) J

(1( 1
2

1
2 ))

0 1
2

1
2
= 1√

3
(iJG2 −

√
2JH2 )

J
(1( 1

2
1
2 ))

−1 1
2

1
2
= 1

2
√

3
(−i
√

3J T1
−1+ i2

√
2JG−1− JH−1) J

(1( 1
2

1
2 ))

1 1
2− 1

2
= 1

2(−iJ T1
−1+
√

3JH−1)

J
(1( 1

2
1
2 ))

0 1
2− 1

2
= 1√

6
(−
√

3iJ T1
1 −
√

2iJG1 + JH1 ) J
(1( 1

2
1
2 ))

−1 1
2− 1

2
= 1√

3
(
√

2iJG−2− JH−2)

J
(1( 1

2
1
2 ))

1− 1
2

1
2
= 1√

3
(
√

2iJG2 + JH2 ) J
(1( 1

2
1
2 ))

0− 1
2

1
2
= 1√

6
(
√

3iJ T1
−1+
√

2iJG−1+ JH−1)

J
(1( 1

2
1
2 ))

−1− 1
2

1
2
= 1

2(−iJ T1
1 −
√

3JH1 ) J
(1( 1

2
1
2 ))

1− 1
2− 1

2
= 1

2
√

3
(
√

3iJ T1
1 − 2

√
2iJG1 − JH1 )

J
(1( 1

2
1
2 ))

0− 1
2− 1

2
= 1√

3
(iJG−2+

√
2JH−2) J

(1( 1
2

1
2 ))

−1− 1
2− 1

2
= 1√

2
(−iJ T1

0 + JH0 ) (88)

where the notationJ3i = (3i(G, T2)) is adopted for brevity.

A.4. Embedding of the (T1, H ), (H, T1), (T2, H ) and (H, T2) icosahedral operators

A.4.1. (T1, H ). The embedding of the icosahedral operatorsT1, T2, G andH in the irrep
(1[10]) is as follows:

J
(1[10])
110 = 1√

5
(−
√

2iJ T2
−2+
√

3iJG−2) J
(1[10])
101 = 1√

15
(−
√

6iJ T2
2 − 2iJG2 +

√
5JH2 )

J
(1[10])
100 = 1√

10
(−iJ T1

1 + 2iJG1 +
√

5JH1 ) J
(1[10])
10−1 = 1√

10
(−
√

3iJ T1
0 −
√

2iJ T2
0 +
√

5JH0 )

J
(1[10])
1−10 = 1√

15
(3iJ T1

−1− iJG−1−
√

5JH−1) J
(1[10])
010 = 1√

15
(
√

3iJ T2
2 +
√

2iJG2 +
√

10JH2 )

J
(1[10])
001 = 1√

30
(3iJ T1

1 + 4iJG1 −
√

5JH1 ) J
(1[10])
000 = 1√

5
(−
√

2iJ T1
0 +
√

3iJ T2
0 )

J
(1[10])
00−1 = 1√

30
(−3iJ T1

−1− 4iJG−1−
√

5JH−1) J
(1[10])
0−10 = 1√

15
(
√

3iJ T2
−2+
√

2iJG−2−
√

10JH−2)

J
(1[10])
−110 = 1√

15
(−3iJ T1

1 + iJG1 −
√

5JH1 ) J
(1[10])
−101 = 1√

10
(−
√

3iJ T1
0 −
√

2iJ T2
0 −
√

5JH0 )

J
(1[10])
−100 = 1√

10
(iJ

T1
−1− 2iJG−1+

√
5JH−1) J

(1[10])
−10−1 = 1√

15
(−
√

6iJ T2
−2− 2iJG−2−

√
5JH−2)

J
(1[10])
−1−10 = 1√

5
(
√

2iJ T2
2 −
√

3iJG2 ) (89)
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where the notationJ3i = (3i(T1, H)) is adopted for brevity.

A.4.2. (H, T1). The embedding of the icosahedral operatorsT1, T2, G andH in the irrep
(1[10]) is as follows:

J
(1[10])
110 = 1√

5
(−
√

2iJ T2
−2−
√

3iJG−2) J
(1[10])
101 = 1√

15
(−
√

6iJ T2
2 + 2iJG2 −

√
5JH2 )

J
(1[10])
100 = 1√

10
(−iJ T1

1 − 2iJG1 −
√

5JH1 ) J
(1[10])
10−1 = 1√

10
(−
√

3iJ T1
0 −
√

2iJ T2
0 −
√

5JH0 )

J
(1[10])
1−10 = 1√

15
(−3iJ T1

−1− iJG−1−
√

5JH−1) J
(1[10])
010 = 1√

15
(
√

3iJ T2
2 −
√

2iJG2 −
√

10JH2 )

J
(1[10])
001 = 1√

30
(3iJ T1

1 − 4iJG1 +
√

5JH1 ) J
(1[10])
000 = 1√

5
(
√

2iJ T1
0 −
√

3iJ T2
0 )

J
(1[10])
00−1 = 1√

30
(−3iJ T1

−1+ 4iJG−1+
√

5JH−1) J
(1[10])
0−10 = 1√

15
(
√

3iJ T2
−2−
√

2iJG−2+
√

10JH−2)

J
(1[10])
−110 = 1√

15
(3iJ T1

1 + iJG1 −
√

5JH1 ) J
(1[10])
−101 = 1√

10
(−
√

3iJ T1
0 −
√

2iJ T2
0 +
√

5JH0 )

J
(1[10])
−100 = 1√

10
(iJ

T1
−1+ 2iJG−1−

√
5JH−1) J

(1[10])
−10−1 = 1√

15
(−
√

6iJ T2
−2+ 2iJG−2+

√
5JH−2)

J
(1[10])
−1−10 = 1√

5
(
√

2iJ T2
2 +
√

3iJG2 ) (90)

where the notationJ3i = (3i(H, T1)) is adopted for brevity.

A.4.3. (T2, H ). The embedding of the icosahedral operatorsT1, T2, G andH in the irrep
(1[10]) is as follows:
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where the notationJ3i = (3i(T2, H)) is adopted for brevity.

A.4.4 (H, T2). The embedding of the icosahedral operatorsT1, T2, G andH in the irrep
(1[10]) is as follows:
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where the notationJ3i = (3i(H, T2)) is adopted for brevity.

A.5. Embedding of the (G,H ) and (H,G) icosahedral operators

A.5.1. (G,H ). The embedding of the icosahedral operatorsT1, T2, G, 1H and 2H in the
irrep (( 1

2
1
2)[10]) is as follows:
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where the notationJ3i = (3i(G,H)) is adopted for brevity.
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A.5.2. (H,G). The embedding of the icosahedral operatorsT1, T2, G, 1H and 2H in the
irrep (( 1

2
1
2)[10]) is as follows:

J
(( 1

2
1
2 )[10])

1
2

1
2 10

= 1
2
√

30
(3
√

6iJ T1
−1− 4iJG−1− 3

√
5J

1H
−1 −

√
5J

2H
−1 )

J
(( 1

2
1
2 )[10])

1
2

1
2 01

= 1
2
√

30
(
√

6iJ T2
−2+ 8iJG−2− 3

√
5J

1H
−2 +

√
5J

2H
−2 )

J
(( 1

2
1
2 )[10])

1
2

1
2 00

= 1
2
√

5
(
√

6iJ T2
2 − 2iJG2 +

√
5J

1H
2 +

√
5J

2H
2 )

J
(( 1

2
1
2 )[10])

1
2

1
2 0−1

= 1√
30
(
√

6iJ T1
1 + 2iJG1 − 2

√
5J

2H
1 )

J
(( 1

2
1
2 )[10])

1
2

1
2−10

= 1
2
√

5
(−
√

2iJ T1
0 − 2

√
2iJ T2

0 −
√

5J
1H
0 +

√
5J

2H
0 )

J
(( 1

2
1
2 )[10])

1
2− 1

2 10
= 1√

30
(
√

6iJ T2
−2+ 2iJG−2− 2

√
5J

2H
−2 )

J
(( 1

2
1
2 )[10])

1
2− 1

2 01
= 1

2
√

30
(3
√

6iJ T2
2 + 4iJG2 − 3

√
5J

1H
2 +

√
5J

2H
2 )

J
(( 1

2
1
2 )[10])

1
2− 1

2 00
= 1

2
√

5
(−
√

6iJ T1
1 − 2iJG1 +

√
5J

1H
1 −

√
5J

2H
1 )

J
(( 1

2
1
2 )[10])

1
2− 1

2 0−1
= 1

2
√

5
(2
√

2iJ T1
0 −
√

2iJ T2
0 +
√

5J
1H
0 +

√
5J

2H
0 )

J
(( 1

2
1
2 )[10])

1
2− 1

2−10
= 1

2
√

30
(
√

6iJ T1
−1− 8iJG−1+ 3

√
5J

1H
−1 +

√
5J

2H
−1 )

J
(( 1

2
1
2 )[10])

− 1
2

1
2 10

= 1
2
√

30
(
√

6iJ T1
1 − 8iJG1 − 3

√
5J

1H
1 −

√
5J

2H
1 )

J
(( 1

2
1
2 )[10])

− 1
2

1
2 01

= 1
2
√

5
(−2
√

2iJ T1
0 +
√

2iJ T2
0 +
√

5J
1H
0 +

√
5J

2H
0 )

J
(( 1

2
1
2 )[10])

− 1
2

1
2 00

= 1
2
√

5
(−
√

6iJ T1
−1− 2iJG−1−

√
5J

1H
−1 +

√
5J

2H
−1 )

J
(( 1

2
1
2 )[10])

− 1
2

1
2 0−1

= 1
2
√

30
(−3
√

6iJ T2
−2− 4iJG−2− 3

√
5J

1H
−2 +

√
5J

2H
−2 )

J
(( 1

2
1
2 )[10])

− 1
2

1
2−10

= 1√
30
(
√

6iJ T2
2 − 2iJG2 − 2

√
5J

2H
2 )

J
(( 1

2
1
2 )[10])

− 1
2− 1

2 10
= 1

2
√

5
(
√

2iJ T1
0 + 2

√
2iJ T2

0 −
√

5J
1H
0 +

√
5J

2H
0 )

J
(( 1

2
1
2 )[10])

− 1
2− 1

2 01
= 1√

30
(
√

6iJ T1
−1+ 2iJG−1+ 2

√
5J

2H
−1 )

J
(( 1

2
1
2 )[10])

− 1
2− 1

2 00
= 1

2
√

5
(−
√

6iJ T2
−2+ 2iJG−2+

√
5J

1H
−2 +

√
5J

2H
−2 )

J
(( 1

2
1
2 )[10])

− 1
2− 1

2 0−1
= 1

2
√

30
(
√

6iJ T2
2 + 8iJG2 + 3

√
5J

1H
2 −

√
5J

2H
2 )

J
(( 1

2
1
2 )[10])

− 1
2− 1

2−10
= 1

2
√

30
(−3
√

6iJ T1
1 + 4iJG1 − 3

√
5J

1H
1 −

√
5J

2H
1 ) (94)

where the notationJ3i = (3i(H,G)) is adopted for brevity.
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